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The method of successive approximations is used for deriving approximations 
of the basic resonance solution of the nonlinear system with one degree of 
freedom, which is more general than those considered in [l-3], without 

reduction to a system with a rotating phase [4]. Such approach is of metho- 
dological interest and has the advantage of clear physical meaning. The 

stability of perturbed motion is analyzed by the first Liapunov method [5]. 
The theorems of existence and stability of the resonant solution are of a 
constructive kind, and the sufficient conditions are obtained in a compact 
and readily understood form, and in a number of cases are explicitly ob- 
tained with the use of integrals of the unperturbed equation. 

An important particular case of a system with one degree of freedom is con- 
sidered, and a specific example of calculations is presented. 

1. Statement of the problem. A system with one degree of freedom de- 
fined by the equation 

i’ + Q (z, 2’) = eq (4 5, r-9 E) (1. 1) 

where x is the generalized coordinate x9 = dx / dt is the velocity, and E > 0 is 
a small parameter, is considered. 

It is assumed that the unperturbed equation 

xoO” + Q (~0, xo’> = 0 (1.2) 

admits a complete set of periodic solutions to which appertain: a) oscillating motions 

x0 = cp (qb 4, x0' = o cp +' ($, a); and b) rotary motions x0 = 9 + rl (99 a), 

x0’ = CO [i + q+’ ($, a)]. In these formulas cp and q are some periodicfunctions of 
phase $ F W (u) (t + 7) of Zn period and of the constant of integration a (a is the 
first integral of Eq. (1.2) ‘G is the phase constant, and 0 (a)is the natural frequency of 

oscillations or rotations ). 
It follows from (1.2) that for the considered type of motion the “work of internal 

forces” during the period To = 2rr. / 0 is zero 
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(1.3) 

In the case of rotational motions it is, furthermore, necessary that function Q be 
&c-periodic in 2 : Q (z + 2n, 2') E Q (5, a?). The identity (1.3) is then of a sim- 

pler form. Let us assume that the first integral of Eq. (1.2), which is solvable for X0’ (x0, 

a), is known and that 50’ (a+ -t- 2n, a) = z,,’ (x0, a). Function x0* is determined as 
the general &c-periodic solution of constant sign of the phase trajectory equation 

dz,’ / dz, = Q (x,,, 5;) i ~0’ (1.4) 

In that case formula (1.3) must be satisfied independently of a 

‘( Q (.r, so’ (s, a)) dx E 0 (I. 5) 

(; 

The following requirements are assumed to be satisfied relative to the perturbed sys- 
tem, 

1. In addition to the indicated above properties function Q (x, xc’> has second par- 
tial derivatives that satisfy the Lipschitz conditions. In the case of oscillations the range 
of argument variation is bounded, while in that of rotation it is sufficient to consider the 

interval 10, Znlowing to the periodicity of Q in 2 . 
2. Function q (t, x, x*, &j is continuous and periodic in t ofconstant period 

2 n / y, &r-periodic in x in the case of rotation and admits first partial derivatives 
with respect to x, a’ and e which satisfy the Lipschitz conditions with constants that are 

independent of t in the indicated region of variation of z, 2’ and E e [O, ~~1. 
We have the problem of determining for the perturbed system (1.1) the resonance 

motions of period T = 2nm / v = nT,,, where no and n are relatively prime inte- 

gers. Parameter a must then satisfy the equation 

mw (a) = n ‘d (1.6) 

and let a* be a simple admissible root of (1.6). During time T the rotating variable 
J: obtains a increment equal to 2nn. The periodicity condition of the kind (1.3) is 

for the perturbed motion of the form 

i Q (J, 1.‘) 2’ & I p. i q (t, ,A’, ,x.*, E) .L’ dt, 5 =x(1, e) (1.7) 

0 0 

and must be satisfied for any E E 10, E,,]. 
In the considered here problem the initial instant of time is immaterial, since the 

method separates individual periodic motions. Hence it is possible to set ta = 0, 
find the related stationary solution, and, then, determine x and X” that correspond 
to some initial instant t,. The specification of such initial conditions ensures that the 

motion is along a stationary trajectory. 
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2. Derivation of the perturbed rmonanoe rolution. The substitution 
x (t, E) = z,, (I#,, a*) + EZJ (t, E), where y is the unknown function of t of period 

1: reduces JZq. (1.1) to the quasi-linear form 

Y” + (Qx'> Y’ + (Qx'> Y = (~1 + ER (4 y, Y’, 4 
R = - V2 (Q+“) ya2 - V2 (Qxt”) y2 - (Qw”) yy’ + (qr.‘) y’ + (2.1) 

(qx’) Y + kE’) + 7. 

where r is a periodic function of t which satisfies the Lipschitz conditions for y, y’, 
and al with constants independent of t, and vanishes when E = 0. Expressions of the kind 

(Qx-'), (d, . . . indicate that the argument of functions z = z,,, 2’ = ze’,and E = 

0. 
The quasi-linear equation (2.1) with periodic coefficients is solved by successive 

approximations with respect to the small parameter n with the use of the method of va- 
rying the constants of integration 

t t1 

yi+l = ai+lu + u s il dtl ’ [(q) + eRil+ ‘t2 - 
0 0 (2.21 

f(q) + E&l + + /f&+1} + v {( i(q) + e&l + & + Bi+lj , i =o, I,... 
0 

where ai+,and pi+i are constants chosen at each step so as to have $!i+i in the form of 
a periodic function; u and v are periodic functions of t, and A is the Wronskian. Their 

derivation is given below. Function Ri is determined in the preceding step to within 
constant a1 

Ri = R (4 yi, yt’, E) 
(2.3) 

It is possible to assume yithout loss of accuracy that in the (i +_1)-st step in func- 
tion r,j/ = yi_l and y’ = yi_1. 

In the zero approximation function y is the periodic solution of the linear equation 
obtained from (2.1) with 8 = 0. Its general solution is obtained from fundamental sys- 
tem of solution of the homogeneous equation 

z” + (QY’) z’ + (Qx’) 2 = 0 
(2.4) 

The linearly independent solutions of Eq. (2.4) are obtained by differentiating z. with 
respect to ‘G and u with u = a* 

21 = U = 50’ (9, a*), 2% = ut + v (2.5) 
The periodic function V is defined by the derivative of 30 with respect to a : u = 

[(dz, / l&z) / (In w)‘l * and is the periodic solution of the nonhomogeneous equation 

v’* + (Q%.‘) v’ + (Q;) v = -2~. - (Qx.‘) .U (2.6) 

Since u* is a simple root of (1.6). hence (In O)‘* # 0. Function z2 is a li- 
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near combination of 21 and zs = (Dx, / Da) *, where z, is also a solution of 
(2.4) and D is the symbol of a total partial derivative. 

Because of the linear independence of 21 and ZZ the Wronskian is nonzero for 

all t and on the strength of the Liouville theorem it is defined by 

A, = A (0), A' = - (Qy’) A, (I/ A)’ = (QY’) (1 / A) 

It follows from (2.7) that function (Qx.7 has a zero mean with respect to 1. 
Using the method of variation of integration constants we can represent the sought 

general solution of y,, in the form 

It follows from (2.8) that function y. is periodic for any a, when condition 

T 

is satisfied and if we state 

B.=-~~dt[~(4)~dt,-(ri);l 
il 0 

(2.9) 

(2.10) 

If Eq. (2.9) has a real root a* , then the periodic solution of y. is determined to 
within the parameter a,. The substitution of (2.10) and T = Z* into (2.8) yields the 
expression y,, = a, u -t yo*,where y,,* is a known periodic function of t. 

The solution of the first approximation equation is of the form (2.2), where i = 0, 

R. = R (4 a,~ -I YO*, a,~’ -t go’*, o), and a, is so far undetermined. To deter- 
mine a, we use the basic condition of periodicity of function y1 similar to (2.9) 

7 

s 
R,+dt = 0 (2. 11) 

0 

Formula (2.11) can be simplified, if the conditions of periodicity of functions y,’ and 
U’ are formulated as follows . 

[ [(qt’) + (4:) u ?- hx*‘) u’ - (2.12) 

0 

,s 

(Qx-4 YO’U’ - (Q,p") you - (Q;,.) (you)‘] + dt = 0 
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(‘2.13) 

Multiplying identity (2.13) by as2 / 2 and (2.12) by a,, adding the products and sub- 
tracting their sum from (2.11) we obtain a linear equatioi in a,. This equation is sol- 
vable when P' (-c*) # O.We have 

T 
1 * 

a0 *=-_ 
1J’ (z”) s Ro*+dt, Ro* = R(t, y,,*, yo'*, 0) (2.14) 

0 

We also use here the identity 

(2.15) 

Thus, when -c* is a simple real root of Eq. (2.9), parameter a0 is uniquely de- 
termined, and Yi = a,u + Yi*, where Y,* is a known periodic function and a, = 

as* + 0 (E) is a unknown parameter. 
Further derivation is by induction. Let us assume that the periodic functions Y,, 

YIP * * *t Yi-1 have been completely determined, and function Yi = aiu $- yi* 
has been determined to within aI. In conformity with (2.2) parameter pi is 

pi=-+_T S dt {\ [(q) + ERi-l]-F dt, - r(q) + ERi--11 c} 
(2.16) 

0 0 

The unknown parameter ai is determined by the condition of periodicity of function 
yi+i of the kind (2.11) 

T 

s R(t, aiu + yi*, a+' + yi'*, e)+t = 0 
0 

(2.17) 

Multiplying the condition of periodicity of function Yi’ of the kind (2.12) by ai and 
adding it to (2.13) multiplied by ,-J~Z / 2 we reduce Eq. (2.17) in ai to the form 

T 
1 

aiL= -- P’ (z*) s {[R(t, yi*, yi'*v 0) + 
0 

(2.18) 

r (t, cliu + yi*, CQu’ + yi**, &)I u + EaiRi-1 [u’ + (QT’) ~1) dt 

Since r (t, y, y’, 0) s 0, yi* (t, 0) = Yo*, hence tli (E = 0) = ao*. For fairly 

small E formula (2.18) is uniquely solvable for ai = ai (E), since its right-hand side 
satisfies for any fixed i the Lipschitz condition with the constant independent of sub- 
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script i, and is of order of a. The root of Eq. (2.18) can be determined by successive 
approximations, and in function r it is possible to set Y = Yi_i without loss of accura- 
cy. Parameter ai (8) is then obtained in explicit form from the linear equation. 

Validity of the proposed scheme of successive approximations (2.2), (2.16), and 
(2.18) for deriving a periodic solution of Eq. (2. l), i. e. the fundamental m / n-res,o- 

nance SOlUtiOn of (1. l), can be proved by the related procedure described in [l]. Conver- 
gence to the exact solution for fairly small e 
ship Yi+i = Yi +O (ei+l). 

> 0 is defined by the power relation- 

Theorem 2. 1. When the conditions indicated Sect. 1 and 2 for periodicity and 
smoothness, and for a reasonably small E > &the perturbed equation (1.1) has a simple 

m / n-resonance solution of the form x = 2s (II, a*) + eY (t, &), where y is 
a periodic solution of Eq. (2. l), bounded when E -+ 0, provided that : 

1) the resonance equation (1.6) has a simple root a* which is within the admissable 
range, and 

2) equation (2.9) for the phase constant r has a simple real root r*. 
Note 2. 1. The cases in which Eqs. (1.6) and (2.9) have multiple roots, are cri- 

tical, and require additional consideration with the use of the general method of Poin- 

car; [l, 61. Solutions are constructed in the form of series or by successive approximations 
in fractional powers of the small parameter E, this may be accompanied by splitting of 

trajectories, i. e. several perturbed trajectories may correspond to multiple roots a* 
and t*, Supplementary conditions for the existence of a stable solution become neces- 
sary and the requirements for smoothness are increased. 

Note 2.2. The case in which Eq. (2.9) is identically satisfied by t relates to 
motions of higher order [l, 2,6-81. Sufficient conditions of their existence can be ob- 
tained by the Poincare method similarly to Theorem 2. 1. Since the direct anaylsis of SYS- 

km (1.1) leads to immensely cumbersome formulas, it is convenient to use the system 
with a rotating phase [8]. 

If, however, Eq. (1.6) is identically satisfied by Q, i. e. W = con% a simpler “qua- 

si-linear” system is obtained whose analysis reduces to that of a conventional system VI. 
3. Investigation of stability of perturbed resonance equations. 

The theorem on the st.abifity of the derived periodic solutions with constantly acting per- 
turbations ~51, no matter how small the parameter E > 0, cannot be applied to system 

(1. l), since the generating solution is unstable, and a single group of solutions corres- 

ponds to the double zero characteristic index of the system in Variations for E = (Mence 
for the investigation of the perturbed motion stability it is necessary to take into account 

higher powers of the small parameter E. The analysis shows that the expansion of charac- 

teristic indices are in powers 6 = 66 i.e. that a more complex critical case is pre- 

sent [l-5]. 
The problem reduces to the analysis of the stability of the quiescence point w = 

W’ = 0. of the variational equation 

W” + Q/W’ + @;W = E (q,*‘W’ + Q:w) (3.1) 

which is obtained from (1.1) by the substitution a = 5 (f, e) + w and the rejection 
of nonlinear terms. According to investigations of Floquet-Liapunov the linear equation 

(3.1) with periodic coefficients has the solution W = m exp ht, where h is the charac- 

teristic index and w is a periodic function of period T It satisfies the equation 
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w" + (QY' + 2h)w'+ (Qx' + hQx.'+ h2)w = 
EQx*‘W’ + &.(qx’ + kg,.‘) w 

(3.2) 

We have to find such h for which Eq. (3.2) has a nontrivial periodic solution, 
The unknown A and w are defined as follows : 

A = a, + 6%2 + 6%, (6), w = w. + 6w, + Pw, + VW, (t, 6) W3) 

According to (3.3) the periodic functions wa and wr are defined by : WO = C& and 
WI = clu -j- h,c, v,where CO and ~1 are constants, and u and V are periodic func- 
tions defined by formulas (2.4)-(2.6). Then the equation for Wq which is obtained by 

substituting (3.3) into (3.2) and equating coefficients at 62 = E implies that 

wa = h,c,v + h,c,v + C& + cow2* (4 h2), 
cil = const 

Function U-9.2 * is periodic, if the condition of the hind (2.17), which should be considered 
as an equation in hI, is satisfied. Using methods described in Sects. 1 and 2, we reduce 
it to the form 

h,2[[2u’+(Q;.)~+~]+dt=-~(q~‘)+dt 
0” n 

where the right-hand side is understood to have the same meaning as in (2,15). On the 
basis of definition (2.7) 

[ [2u’ + (Qx.‘) u + u] + dt = i [(2v. $- u) + + (+) ,,,:I dt = T 
I ” 

and the equation for A1 reduces to the form 

h12 = P' (9) / T.. (3.4) 

It follows from (3.4) that when P’ > 0 one of the roots h, is positive and the quiescence 
point of Eq. (3.1) is unstable, since one of the characteristic indices has necessarily a 
positive real part. If p’ ( 0 both roots are pure imaginary in the calculated approxi- 
mation, and stability is determined by h,. 

A more exact calculation of the characteristic index is obtained by writing the equa- 

tion for the zero approximation of function WS as was done for ws.The condition of 

wa periodicity determines the sought hs- To simplify the derived formulas it is neces- 
sary to multiply the equation for w2 by w1 / A, subtract it from the equation for w1 

multiplied by ws / A, and integrate with respect to t from 0 to T. The obtained thus 
combination is then added to the condition of periodicity of ws- multiplied by the 

constant cs. As a result, for h, we obtain the formula 

T (3.5) 

A, = & 1 [(qr.‘) - (Qib., YO’ - (Q;x) ~01 dt 
0 
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Theorem 3. 1. The perturbed m / n-resonance solution of Eq. (1.1) is stable 
when E > 0 is reasonably small, and is so asymptotica~y, if 

pi (+) < ()(a necessary condition), and 
parameter h, calculated by (3.5) is negative. 

Note 3. 1. The quantity P’ (T*) # 6 by virtue of condition 2) of Theorem 2.1. 
Note 3. 2. When jLO = o it is necessary to calculate h (c)more exactly, which 

implies higher requirements for the system smoothness [Z]. 
Note 3.3. Unlike in systems close to conservative investigated in [l-3], here 

the expression for As contains two supplementary terms with the negative sign (see (3.5)). 
These quantities are determined not only by the generating solution 50: but, also, by 

the zero approximation yO of the periodic addition Al (t, E). They correspond to certain 
additional coefficients of ” viscous friction”. In the particular case of system (1.1) con- 
sidered below the contribution of these additions to h, is zero. 

4. The particular case‘ Example of calculation of link me- 

chaniom resonance rotations. Let the Lagrangian function of the unperturbed 
system be of the form L = p (z) x.2 / 2 - U (x), where p (3) > l_~’ > 0 is the 
mass which depends on the generalized coordinate J, U (CC) is the potential, and the 

work of external perturbing forces is defined by e l f (t, X, z’) ~‘dt, where E is a small 
parameter and j is a periodic function of t, In the case of rotations all functions are 

assumed to be 2% -periodic in 1~‘ . 
The equation of motion of the perturbed system reduces to the form (1.1) 

Q = ($ I /A) x’~ :’ 2 + I;, F = U’ I p, q = f I p (4.1) 

where the prime denotes a derivative with respect to z 
We consider a vibration-rotation system. When E l = 9 the energy integral h = 

p (x0) ~~‘2 / 2 + U (x0) = const. Since U is a smooth periodic function, hence it 

attains in the interval z CZ [O, 2n] its minimum u, = u (xi) and maximum u, = 

U (x2) values, and U, < h. Let us assume, for simplicity, that this occurs once and 

that B (It‘) = 0 only at points X = xX, %. Then for iJ, < h < Us oscillations in the 

system occur within the limits ze E I&, &I, where El (h) and E, (h) are simple roots 

of the equation U (x0) = h. When h > U, we have either forward (zO” > 05 > 0) 
or reverse (5s’ \r - c1 ( 0) rotations. 

The periods of natural os&lations and rotations are, respectively, defined by 

and the periodic motion itself is determined by formula 

Let the quality h* be determined for some relatively prime integers m and IZ 
by the resonance condition (1.6). Then Eq. (2.9) in 7 can, with allowance for (4.3), 
be written in the form 
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dx 
X”‘(X, h*) 

For the rotational mode formula (4.4) is simplified 

2777% 

P(z)= % \ (f)dx = 0 
0 
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(4.4) 

(4.5) 

Formula (2.7) was used in (4.4) and (4.5) for the Wronskian 

A = A0 exp s (Qc’) dt = Aopo / p (x), p. = p (X (0)) 

If -G* is a simple real root of the transcendental equation (4.4) (or (4.5) ), a 
resonance solution of the perturbed equation exists and is unique when E > 0 
is reasonably small. In particular formula (4.3) determines that root with the 

error 0 (e) for all 1 t 1 ( m , when h = h* and ‘t = z*,Higher approximations 
are derived with the use of formula (2.2) 

and, if in that case F = U' G 0, then iimc- 

tion z2 = ut and A = ~2 = u2 (0) p. / p (x0). 

For the analysis of stability it is neces- 
sary to determine functions (Q”& = p’ / p 

and (QVXaX) = (p’ / p)‘zo’. It is interesting 
that (see Note)3.3) in the considered system 
the additional terms for h2 cancel each other. 

In fact 

Fig. 1 

i (Qkh6dt = [ (-$)?/,‘dt = yo$lr _ 
0 0 0 

m 
1 

P’ ’ S( > -p XO’YO tit 
0 

Thus the stationary resonance solution is asymptotically stable for one of 
the values of T*, if the equivalent coefficient 8f of viscous friction of exter- 

nal forces is negative , i.e. if [2,3] 
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Aa = +[ (f,.‘) at < 0 (4.6) 

0 

To illustrate the method we investigate below an example of the basic (m = n = 
1) resonance rotations of symmetric reciprocating motion of a slide-and- crank linkage 

[9] lying in a plane normal to the force of gravity. It is shown in plan view in Fig, 1, 

where M denotes the mass of the slideway SS’, the mass of the slider 0’. I the moment 
of inertia of the crank 00’ relative to the center of rotation t- the crank length, and 

2 denotes the angular velocity. 
In the considered problem U’ E 0 and the system energy is 

h = [I + 12 (p + ,V sin2x)] xs2 / 2 = const > 0 (4.7) 

The unperturbed rotational motion xo and its period To are defined by the first integral 
in (4.7) 

E(n/2---0, k) 

I 

2M E(k) (4.8) 

I$(/$) , 7’,(h)=2~ h 7 

k = 2 {M / [I + E2 (p + M)]}“’ (0 < k < 1) 

where E (Q, k) is an elliptic integral of the second kind and E (k) is a complete ellip- 
tic integral of the second kind. 

We assume that a small periodic force efO sin (vt t y) parallel to the guideways 
SS’ acts on the slider 0’ , while the slideway exerts on it the small force of viscous 

friction proportional to the relative velocity--MA Z* cos z (h > O).The moment of per- 
turbing forces is then 

ef = 8f0 I cos 5 sin (vt + y) - 2ehZ2x’ Cos 2z 

where e > 0 is a small numerical parameter andf,, V, y,and h are constants. 
Equations of the kind (4.5) that define the phase constant r in (4.8) reduce to the 

form 
R cos (VT + y i- 0) - c = 0 (4.9) 

where K (k) is a complete elliptic integral of the first kind. Formulas for coefficients 
A. R *and t’ can be approximately calculated by the powers of modulus k with any de- 
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sired degree of accuracy. Such calculations are effective for small k, when the unpertur- 
bed motion is close to uniform rotation at velocity /2h* /(I + @)]” :in Particular 

A F 0 (I@). B = (foZ / A,,) (n - k2 / 8) + 0 @‘? 

C‘ :: x (21. 1” /I AO) (1 4 V&2) [2h* / (I + pz2)]“’ i- 0 (k”) 

When 1 L’ i R 1 < 1 Eq. (4.9) has in the interval of 2n length two simple real roots 

~,,,--(l/~)[tarcros(C/R)-_A -y] 

To each of roots rr $2 corresponds one stationary solution, when E > 9 is reasonably 
small. Since according to (4.8) the dependence of sOon R is expressed in terms of the 
phase, hence 2s = ur, which implies that ~2 = u*, and the addition &I/ to x0 is obtained 
with the use of the simpler scheme 

T 

c Ri +=o, i=o, I,... 

; 

(9) -I- ERj = fi {z + 1” [/A + l-b’f sin2 (x0 + a&)]}-‘7 fi = f (k x0 + 

q/j. I,,' + E&Q') 

For one of roots rr,s the quantity P’ (.t) < 0, consequently the perturbed rotation that 
corresponds to that root is asymptotically stable, since i., = - i. < 0. 

If the system is in a uniform gravitational field, the second integral of unperturbed 

motion (4.8) and the periods of oscillations or rotations (4.2) are expressed in terms of 
elliptic integrals of the third kind. Let the mechanism be in such position that the mo- 

tion of the slideway occurs along the gravity force vector. Then 

1: (,z) = [(p + M) 1 + rndl g (1 - cos x) 

where m is the mass of the crank and d its “arm”. Let the system be subjected to the mo- 
ment of external periodic forces and to the friction force 

/ = j. 1 COs I sir1 (Y1 _1- y) - 2kZ2x’ C0S2 5 

and let 

i. e. the problem is that of rapid forces rotation. Then, if we introduce the “brief time” 
s = vt and assume that the ratios fol (T ‘- !tI”) v2 and 33 i (Z + p) v are small quan- 

tities of the same order t’. formulas (4.7)-(4.9) remain unchanged, because the integral 
of the kind (4.5) of the perturbed potential force 

m 2s 

s sin 5g.1 ds Ih 
[Z + 1.1 (p + M sin” xl,)1 A = b,, s 

sin x dx = 0 

0 0 

remains unchanged. 
Thus the problem of the slide-and-crank mechanism rapid rotation reduces to that 

investigated previously. 
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